LEM-4 promotes rapid dephosphorylation of BAF during mitotic exit
نویسنده
چکیده
The transitions between the successive cell cycle stages depend on reversible protein phosphorylation events. The phosphorylation state of every protein within a cell is strictly determined by spatiotemporally controlled kinase and phosphatase activities. Nuclear disassembly and reassembly during open mitosis in higher eukaryotic cells is one such process that is tightly regulated by the reversible phosphorylation of key proteins. However, little is known about the regulation of these mitotic events. In particular, although kinase function during entry into mitosis is better studied, very little is known about how proteins are dephosphorylated to allow nuclear reformation at the end of mitosis. We have identified LEM‑4, a conserved protein of the nuclear envelope, as an essential coordinator of kinase and phosphatase activities during mitotic exit. Inhibition of VRK‑1 kinase and promotion of a PP2A phosphatase complex by LEM‑4 tightly regulate the phosphorylation state of BAF, an essential player of nuclear reformation at the end of mitosis. Here I offer extended comments on the contribution of LEM‑4 in the regulation of protein phosphorylation and nuclear reformation.
منابع مشابه
Coordination of Kinase and Phosphatase Activities by Lem4 Enables Nuclear Envelope Reassembly during Mitosis
Mitosis in metazoa requires nuclear envelope (NE) disassembly and reassembly. NE disassembly is driven by multiple phosphorylation events. Mitotic phosphorylation of the protein BAF reduces its affinity for chromatin and the LEM family of inner nuclear membrane proteins; loss of this BAF-mediated chromatin-NE link contributes to NE disassembly. BAF must reassociate with chromatin and LEM protei...
متن کاملDephosphorylation of barrier-to-autointegration factor by protein phosphatase 4 and its role in cell mitosis.
Barrier-to-autointegration factor (BAF or BANF1) is highly conserved in multicellular eukaryotes and was first identified for its role in retroviral DNA integration. Homozygous BAF mutants are lethal and depletion of BAF results in defects in chromatin segregation during mitosis and subsequent nuclear envelope assembly. BAF exists both in phosphorylated and unphosphorylated forms with phosphory...
متن کاملLEM-3 – A LEM Domain Containing Nuclease Involved in the DNA Damage Response in C. elegans
The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuc...
متن کاملAsymmetric spindle pole localization of yeast Cdc15 kinase links mitotic exit and cytokinesis
The inactivation of mitotic cyclin-dependent kinases (CDKs) during anaphase is a prerequisite for the completion of nuclear division and the onset of cytokinesis [1, 2]. In the budding yeast Saccharomyces cerevisiae, the essential protein kinase Cdc15 [3] together with other proteins of the mitotic exit network (Tem1, Lte1, Cdc5, and Dbf2/Dbf20 [4-7]) activates Cdc14 phosphatase, which triggers...
متن کاملDepletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes
Barrier to autointegration factor (BAF), which is encoded by the BANF1 gene, binds with high-affinity to double-stranded DNA and LEM domain-containing proteins at the nuclear periphery. A BANF1 mutation has recently been associated with a novel human progeria syndrome, and cells from these patients have aberrant nuclear envelopes. The interactions of BAF with its DNA- and protein-binding partne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013